Digitale Produktentwicklung

Optimaler Prototyp | Reduktion Time-To-Market | Effiziente Produktentwicklung | Kostenreduktion | Skalierbarkeit

Manfred Nader
Bereichsleiter Mechanics & Control
Linz Center of Mechatronics GmbH

+43 (0) 732 2468 6124 manfred.nader@lcm.at

Mission

Transfer

von Forschungsergebnissen in die betriebliche Praxis

Integration

von Technologien zu einer wirtschaftlich profitablen Gesamtlösung

Begleitung

unserer Kunden entlang der gesamten Innovationskette

IDEE ZUM PROTOTYP

Idee

- Problemstellung
- Anforderungen
- Optimierungsbedarf

Konzept

- Basic Engineering
- Budgeteinschätzung
- Aufwandsabschätzung
- Projektplan

Entwicklung

- Detail Engineering
- Modellierung
- Simulation
- Data Analytics
- Digitale Produktentwicklung
- Virtuelle Inbetriebnahme und Testen

Tests

- Engineering
- Messeaufbauten
- Testen

Prototyp/Produkt

- Spezifikationen
- Kleinserie
- Fertigungsdokumentation

ANWENDUNGSFELDER UND KOMPETENZEN

Elektrische Antriebe

Motordesign Leistungselektronik Regelung elektrischer Maschinen Magnetlager

Schwingungstechnik

Messtechnik Schwingungsanalyse Schwingungsdämpfung Aktorik

Data Analytics

Anlagen- und Prozesszustände Algorithmen Zielgerichtete Analysemethoden

Modellierung und Simulation

Mechanik Strömung, Thermisch, Partikel Elektromagnetisch, Elektronik Mechatronik & Multiphysics

Hydraulische Antriebe

Industrie- und Mobilhydraulik Digitalhydraulik Integrierte Antriebe Hybride Antriebe

Industrial IoT

KI & Datenanalyse Industrial IoT Lokalisierung Flektronik

KI Methoden

Signal Processing Sensorfusion Datafusion

Virtuelle Inbetriebnahme und Testen

Modellbildung & Modellintegration Regelungstechnik Virtuelle Inbetriebnahme

Messdienstleistungen

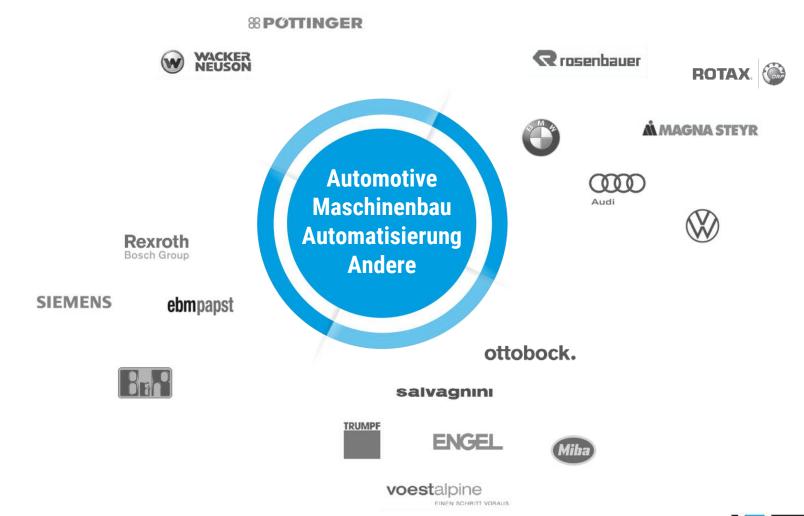
Antriebstechnik Schwingung & Schall Geometrie Onsite & Labor

Emerging Technologies

Emerging Technologies Industrial Blockchains Knowledge Engines

Digitale Produktentwicklung

Virtueller Prototyp Virtuelle Inbetriebnahme Digitaler Zwilling Condition Monitoring & Predictive Maintenance



Open Forsight

Kollaborative Workshops Aktuelle Fragestellungen Neue Geschäftsmodelle

BRANCHEN UND LÖSUNGEN*

CENTER OF MECHATRONICS

Digitale Produktentwicklung

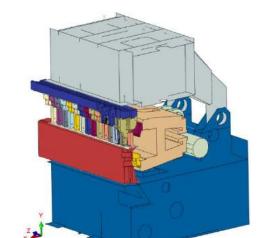
Ziele - Vorgehensweise

Ziele:

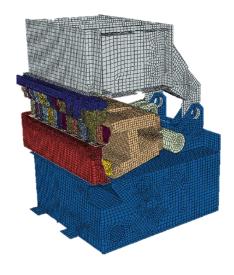
- Entwicklungszeit verkürzen
- Entwicklungskosten senken
- Qualität verbessern

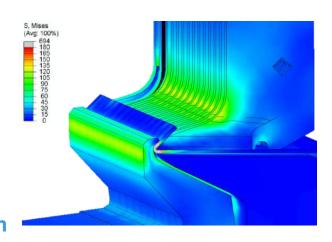
source: shutterstock

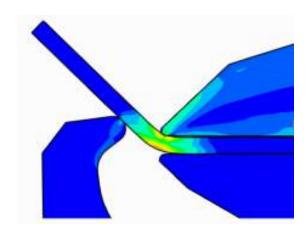
Digitale Produktentwicklung


Ziele - Vorgehensweise

Ziele:


- Entwicklungszeit verkürzen
- Entwicklungskosten senken (Prototyp = 90% Serienversion)
- Qualität verbessern


Vorgehensweise:


- Basis sind 3D-CAD Modelle
- Darauf aufbauend rechnerische Verfahren wie Mehrkörper-Simulation und Finite-Elemente-Methode zur Beschreibung des physikalischen Verhaltens
- virtuelle Tests anhand von digitalen (virtuellen) Prototypen möglich

salvagnini

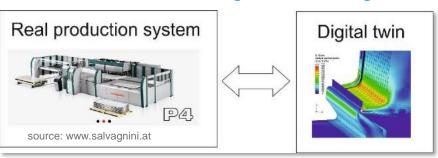
Digitale Produktentwicklung

... vom Design bis zum Betrieb

Design - Digitaler Prototyp



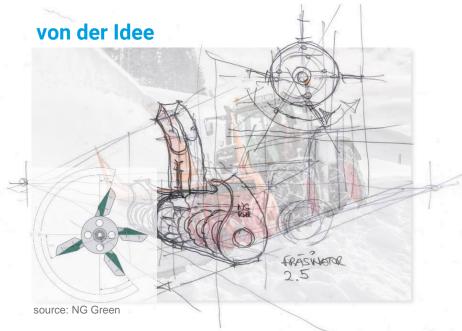
source: www.directindustry.de


- Steigerung Produktqualität
- Reduktion Kosten für reale Prototypen
- Reduktion von Entwicklungszeiten
- Sicherung von Experten Know-how
- → offline Simulationsmodelle (CAD, Finite Elemente, Mehrkörpersimulation)

Virtuelle Inbetriebnahme (VIBN) und virtuelles Testen

- Risikoreduzierung für Inbetriebnahme/Testen
- Frühzeitige Fehlererkennung
- Senkung der Entwicklungskosten
- Machbarkeitsanalysen
- → echtzeitfähige Simulationsmodelle (CAD, Tools zur VIBN, Hardware-in-the-loop (HIL), Software-in-the-loop (SIL))

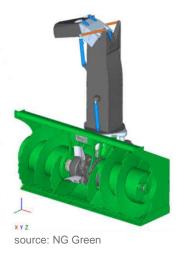
Betrieb und Service – Digitaler Zwilling


- Autonomer Maschinenbetrieb
 - Sicherung Qualität in Serienfertigung
 - Ermöglichung Lot-Size-One Fertigung
- Condition Monitoring
- Predictive/Preventive Maintenance
- → online Modelle auf Maschine (echtzeitfähig)

Digitaler Prototyp

NG-Green: Multifunktionsfräse

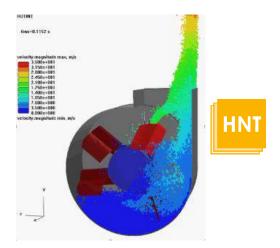
Ziel: innovative effiziente Multifunktionsfräse

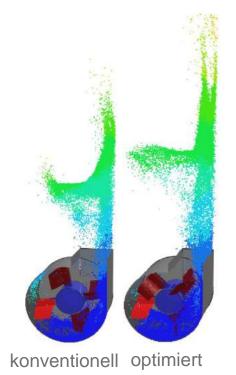

Herausforderungen:

- Veranschaulichung (Validierung) der Innovation
- Aufwendiger und teurer Prototypenbau
- hohes Entwicklungsrisiko (Funktion, Entwicklungszeit)
- Nutzung des Optimierungspotential

mit dem digitalen Prototypen

CAD-Konstruktion





source: NG Green

physikalische Simulation (https://hotint.lcm.at/)

Digitaler Prototyp

NG-Green: Multifunktionsfräse

weltweit patentierte Technologie (Fräsinantor)

source: NG Green

Mehrwert für NG-Green:

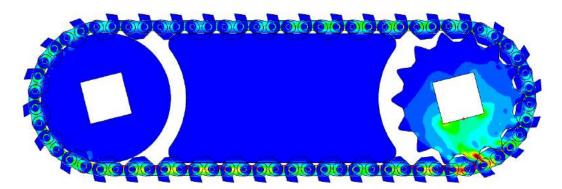
- Veranschaulichung der Innovation (Validierung)
- Effiziente und optimierte Produktentwicklung
 - Reduktion von realen Prototypen
 - Reduktion der Entwicklungszeit
- Einsparung von 30% der Entwicklungskosten
- Energieeinsparung bis zu 70%
- Reduktion der Staubbelastung
- Transport von unterschiedlichsten Schüttgütern (Mais, Getreide, Futtermittel, Schnee, Sand, ...)

Digitaler Prototyp

PRINZ - Kettensägetechnik

Ziele:

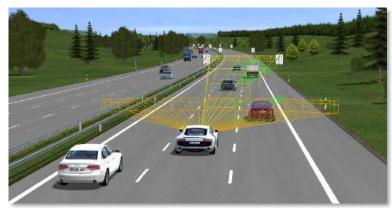
- hohe Effizienz der Maschine und des Schneidprozesses
- hohe Schnittqualität
- hohe Standzeiten
- niedrige Vibrationen, Lärm
- Nachhaltigkeit von Experten Know-How


Mehrwert für Fa. Prinz:

- parametrisiertes Design
 - → optimierte Produktentwicklung ermöglicht
 - → neue Produktinnovationen ohne reale Prototypen
- durch Absenkung der Ein- und Ausläufe → 30% Erhöhung der Standzeiten
- Speicherung von Experten Know-how in Simulationsmodellen und Ergebnissen

mit dem digitalen Prototypen

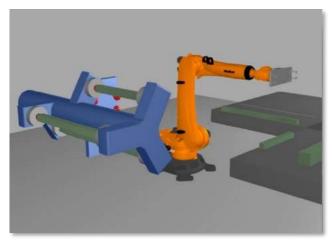
physikalische Simulation (Finite Elemente)



Motivation

Autonomes Fahren

source: www.vires.com


Herausforderungen autonomes Fahren:

 Assistenzsysteme für autonomes Fahren und die Umgebungseinflüsse sind zu komplex um diese real zu testen.

Lösungsweg autonomes Fahren:

- Virtuelles Testen der Fahrsituationen und der Assistenzsysteme
- Identifikation von kritischen Szenarien

Industrie

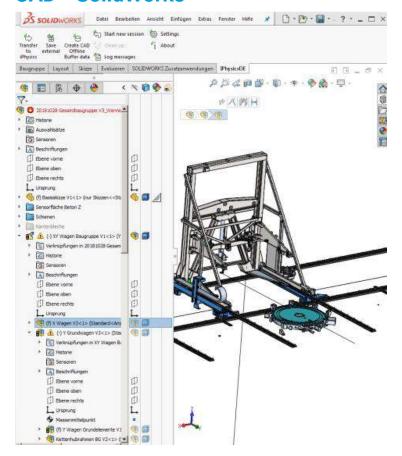
7iel in Industrie:

- Risiko in Entwicklung und Inbetriebnahme reduzieren
- Entwicklungs- und Inbetriebnahmedauer reduzieren
- Fehler bei der realen Inbetriebnahme vermeiden

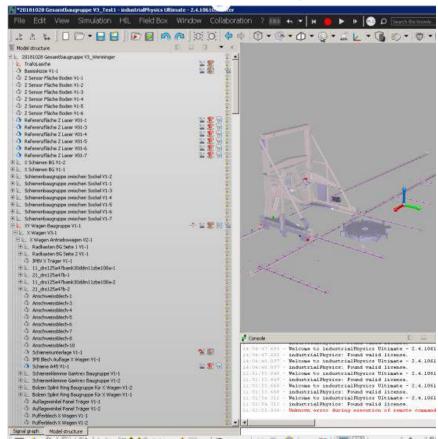
Anwendungsbereiche Industrie:

- Prozess-Simulation:
 - Überprüfung Durchsatz, Taktzeit, Kollisionen
 - Machbarkeitsuntersuchung
- Test Automatisierungssoftware (SPS)
- Training Bedienpersonal
- Virtuelle Tests von Software Updates
- Analyse Fehlerfälle (Service)
- Kundenabstimmung

vollautomatisierte Haubenofenanlage


Software-Umgebung:

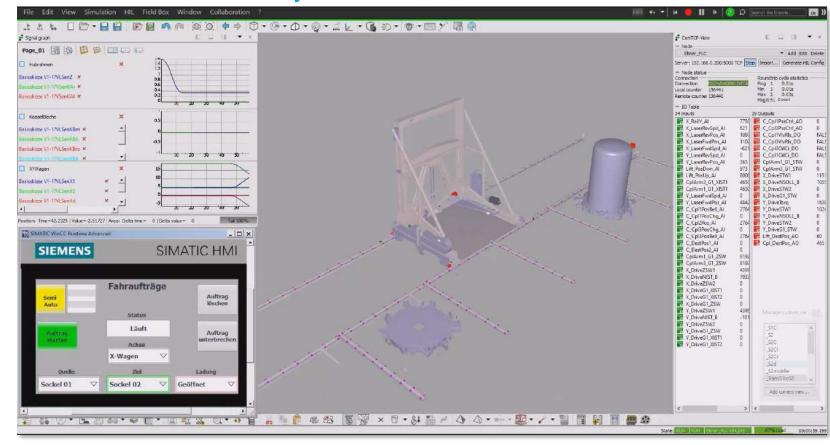
- CAD: Solid Works
- Virtuelle Inbetriebnahme: iPhysics


Erstellung virtuelle Anlage:

- 3D-Geometrie (CAD-Import)
- Kinematisierung
- Definition von Sensoren und Aktoren

CAD - SolidWorks

Virtuelle Inbetriebnahme: iPhysics



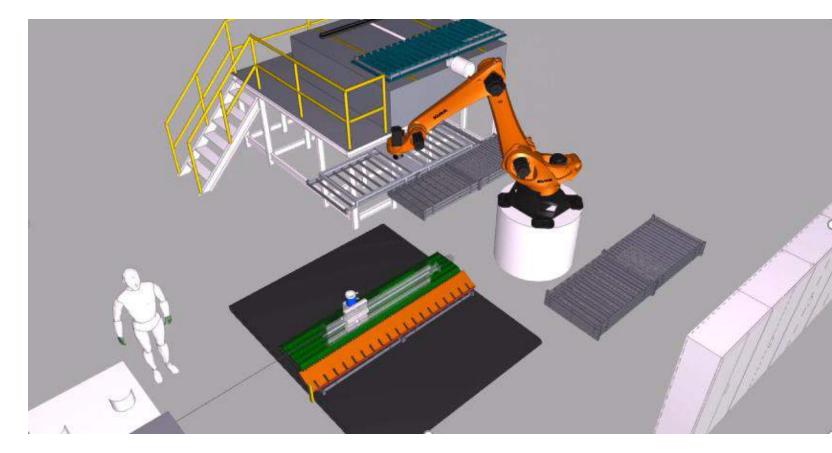
vollautomatisierte Haubenofenanlage

Durchführung der VIBN:

- Kopplung Soft SPS zur Überprüfung des Haubentransports
- Überprüfung Einbausituation (Sensoren, Koppelpunkte)
- Ablaufsimulation von Bewegungssequenzen (manueller/automatischer Modus)

Virtuelle Inbetriebnahme: iPhysics

Robotiksysteme - Ablaufsimulation


Ablaufsimulation: iPhysics

Ziele:

- Konzeptevaluierung
- Durchsatz/Taktzeiten ermitteln
- Robotik: Erreichbarkeit, Vermeidung von Kollisionen

Mehrwert für Fa. Hainzl:

- Unterstützung in Angebotsphase
- Klare Konzeptpräsentation für Endkunden
- Risikoreduktion

Robotik Applikationsentwicklung

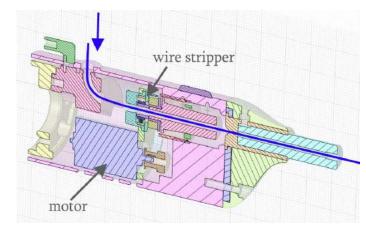
Konventionelle Fertigung:

- Stückzahl 1 (Einzelanfertigung)
- Spulen werden per Hand gewickelt (Drahtdurchmesser 1mm)

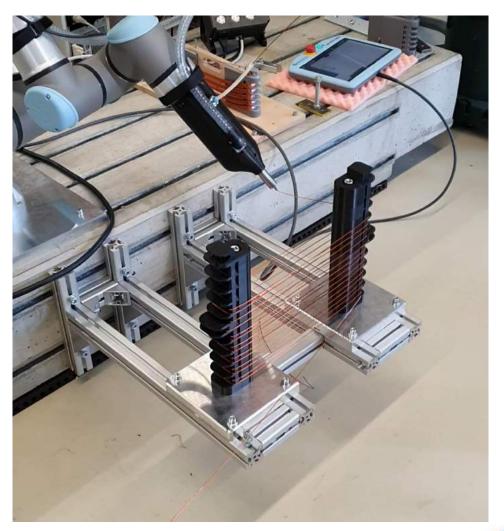
Ziel:

 Evaluierung: Schnell und effektiv vom manuellen zum automatisierten Prozess

Wasserkraftgenerator 450kW



Robotik Applikationsentwicklung

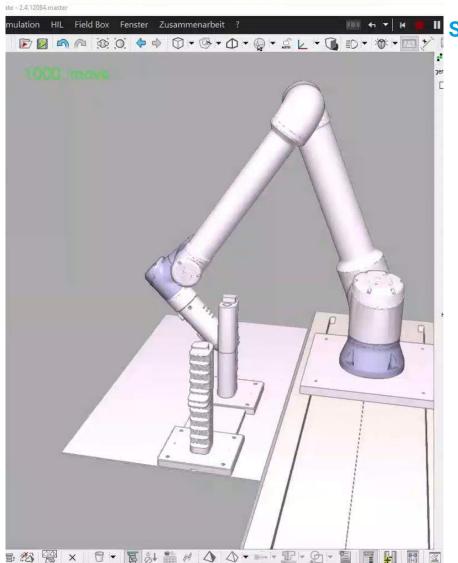


Werkzeug:

- Aluminium & 3D-Druck Teile
- Wolframkarbid Düse
- Automatische Abisolierung
- Absaugung für Isolier-Abfall

Spulenhalter:

Aluminium & 3D-Druck Teile



Robotik Applikationsentwicklung

Virtuelles Testen:

- Arbeitsraum
 - Erreichbarkeit
 - Kollisionen
- Genauigkeit
- Schnelle Anpassbarkeit an unterschiedliche Spulendesigns

Digitaler Zwilling

Blechbiegeautomaten

Entwicklungsziele:

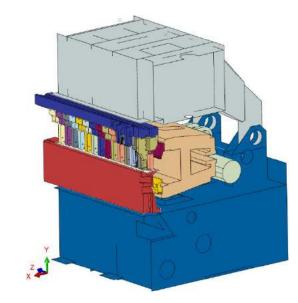
- Stabiler Serienproduktionsprozess trotz schwankender Materialeigenschaften
- Produktion mit Losgröße 1
- Gewichtsreduktion / Energieeinsparung

Herausforderungen:

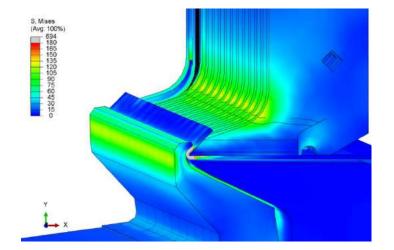
- Kräfte ca. 60t
- Positioniergenauigkeit ca. 10µm
- Keine Messung des Biegewinkels
- Winkeltoleranz < 0.5°

salvagnini

Digitaler Zwilling


Blechbiegeautomaten

Optimierung mittels digitalem Prototypen:


- Topologieoptimierung
- Minimales Gewicht (Materialkosten, Transportkosten)
 - → Gewichtsreduktion 10% (insg. 1.500kg)
 - → Überseetransport 50% Kostenreduktion (Transport in Standard-Containern ermöglicht)
- Minimale Schweißquerschnitte
 → bei der Fertigung der Rahmenbauteile
 Energieverbrauch um 30% verringert
- Einsatz kostengünstigerer Antriebe möglich

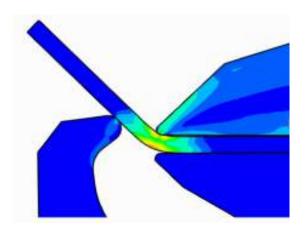
Digitaler Prototyp

CAD-Konstruktion

• Finite-Elemente Berechnung

salvagnini

minus 50kg


Digitaler Zwilling

Blechbiegeautomaten

Virtuelles Testen und Digitaler Zwilling:

- Digitaler Protoyp: realistisches Abbild des physikalischen Verhaltens
- Virtuelles Testen der Biegevorgänge
- Automatische Identifikation von Materialeigenschaften ohne zusätzliche Sensoren (MAC 3.0)
 - → Adaptive voll automatisierte Losgröße 1 Produktion
 - → Große Stückzahlen mit konstanter Qualität
 - → Reduktion von Ausschuss

Digitaler Zwilling

- Ermittlung Biegekraft und Blechstärke
- Identifikation Material
- Anpassung der Trajektorie
- → Korrekter Biegewinkel im ersten Schritt

LCM-Seminare (neu ab Juni 2022)

Know-How Aufbau mit 1-Tages-Workshops

Mechanische Schwingungen

Virtuelle Inbetriebnahme

Mehrkörper-Simulation

Industrial IoT, Wireless & Harvesting

Elektromotor

Vortragende: LCM-Mitarbeiter:innen, welche laufend in diesen Themen Lösungen für Kunden realisieren.

Termine: Juni 2022, Wiederholung im Herbst 2022 geplant

Durchführung des Termins in Kleingruppen bei mind. 5 Anmeldungen (Gesamt, nicht nur von 1 Unternehmen)

Kosten: 700€ pro Teilnehmer:in und Seminar. Empfohlene Fördermöglichkeit für KMUs (bis zu 80% der Kosten!) durch die FFG finden Sie hier.

Information und Anmeldung: www.lcm.at/lcm-seminarreihe (Seite noch im Aufbau) bzw. daniel.reischl@lcm.at

Manfred Nader

Business Area Manager Mechanics & Control

T +43 (0) 732 2468 6124

E manfred.nader@lcm.at

Linz Center of Mechatronics GmbH, Altenberger Straße 69, 4040 Linz AUSTRIA

